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Introduction

Electricity flow, 2008*
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End- uses

distributed generation with waste heat

utilization was the starting point 7 years ago
*source: EIA
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Global concept now
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DER-CAM model

The Distributed Energy Resources -
Customer Adoption Model
(DER-CAM)
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DER-CAM model

O is a deterministic Mixed Integer Linear Program (MILP),
written in the General Algebraic Modeling System (GAMS®)

O minimizes annual energy costs, CO, emissions, or multiple
objectives of providing services on the building level
(typically buildings with 250-2000 kW peak)

O produces technology neutral pure optimal results with highly
variable runtime

O has been designed for more than 7 years by Berkeley Lab
and academic collaborations in the US, Germany, Spain,
Belgium, Japan, and Australia = exchange visitors

O might be ready for commercialization
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GAMS

Ois a high-level modeling system for mathematical
programming and optimization

O consists of a command language and a set of integrated
solvers, e.g. LP, MILP, and also NLP

Ois entirely text based, easy to learn and use

Ois cheap for academic users (~1 900%), but more expensive
for commercial users (~11 200$) — might be a problem for
DER-CAM commercialization plans
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Optimization

O General optimization problem

minimize  f(X) subjectto g.(x)=0,1=1, ...,m.

xe R"

O DER-CAM is an engineering-economics optimization tool for
decision support 2> kept stepwise linear to simplify problem
and optimization

minimize f(Xx) = Z c, -Xx, subjectto Z a, -x, =0
k=1 k=1

O MILP problem: some decision variables have only integer
solutions, e.g. the number of installed fuel cells
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Discrete versus continuous

captures economies of scale continuous technologies

better Improve runtime
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High-level schematic
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Multi-criteria objective function

Multi-criteria objective function to capture different strategies of
building as cost minimization, CO, minimization, or combinations

min wﬂ+(1—w) Carbon 0<w<l
MaxCost MaxCarbon

w...weight factor
Cost ($/a)and Carbon(t/a) are objectives

MaxCost ($/a), MaxCarbon (t/a) are parameters to make objective function dimension— less

T
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Entire cost objective function

min Cost = ) ContractDemandCharge: max {Load,, , +Load,, } * 2_MonthlyFeeElectric

meM ,teT ,he H meM
meM

+ ZZ (DERInvestmenti -Maxp; + Capacity. ) StandbyCharge + Z Z Z Z ElectricityPurchase,,,, - N -ElectricityRate |

meM iel meM peP teT hep

+ Z Z MonthlyDemandRates_, - max {ElectricityPurchasem . h} + Z z Z DailyDemandRates _, - N, ~max{ElectricityPurchasem . h}
meMdeD T reT ke - meM teT deD , ’ hed "

+ Z Z Z ElectricityPurchase,,,, - MktCRate - N -CTax — z z z ZGenX imen N PX
meM €T he H iel meMteT heH

— SwitchPurchase - StaticSwitchParameterValue - SwitchSize- Z z z ElectricityPVExport,,,,-N_ -PX .

meMteT heH

* Z Z Z Z (GenLi,m,;,h + GenX[,m’t’h ) . Ei . Nm’t . (NGBaSiCPI‘iCem J

meM1eT heH i Iy ; + NGCarbonEmissionsRate - CTax

. | |
+ ZZ Z NGforHeat, ., -N_ - NGBasicPrice,, + zz z z (GenLl.’m,,’h + GenX i,m’t‘h)~—~ N, - OtherFuelPrice,
meM 1T hetl mehTmt | 4 NGCarbonEmissionsRate - CTax meMeT heH it Iy E,

+ z z z z NGforNGChill,,,,, "N - (NGforABS,_ + NGCarbonEmissionsRate - CTax)

meM teT heH ke K

+ (MonthlyFeeNGBasic + MonthlyFeeNGforDG + MonthlyFeeNGforABS) + Z DERInvestment, - Maxp; - CapCost; - Annuity;

meM iel
+ ZNGChillPurchaseQuanzityk -Maxp, -CapCost, - Annuity, + Z(Purchasel_, -FixedCost, + Capacity, - VariableCost )- Annuity ,
ke K leL .
OMFix.
+ SwitchPurchase - (SWitChSize -CostM + CostB)- AnnuitySwitch  + Z Z DERInvestment, - Maxp, %
meM iel .
. . . . . OMF
+ ZZCapacnyl -FixedMaintenance, + ZZNGChzllPurchaseQuantztyk -Maxp, %
meM (e L meMkeK
+ Z[Z z z NGChillAmount, ,, ,, - N -OMVar, j + Z(zz Z (GenL,.,mJ,h +GenX,,, ., ) N, - OMVaqj
meM\ keK teT he H meMN\ i€l t€T heH

+ z z z z DemandRe sponse, ,, ., - N -DemandResponseVC,;

deDmeMteT heH

zex2] i Environmental Energy Technologies Division 2




Example analyses

O Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI)
to make ZNE buildings marketable by 2025

O Use of energy efficient technologies and on-site (renewable)
energy generation

O Our definition of the ZNEB constraint with in DER-CAM
(Net Zero Source Energy)

Electricity Purchased — Electricity Exported
MacrogridEfficiency

+ Natural Gas Consumed =0; on an annualenergy basis
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Questions

O How can zero net energy buildings (ZNEB) or zero
carbon buildings (ZCB) be accomplished with available
technology options?

O Can ZNEB be accomplished by photovoltaic and solar
thermal only (Torcellini and Crawley), or would CHP
be a wise choice?

O Do electric storage systems support PV penetration?

O What are the costs for reaching ZNEB / ZCB?

| 1] W Environmental Energy Technologies Division '



CA nursing home, cost minimization
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CA nursing home, cost minimization

(w=1)
ZNEB run 4, diurnal electricity pattern on a July weekday
3500
3000 eIcTctricity
sales PV e

original total oot from battery
2000 - electricity load © & | electricity
> electricity load from DG
¢ input to battery, reduction ;
1500

mostly cheap
off-peak electricity electricity
|

from utility

1000

500

1 2 3 45 6 7 8 91011121314151617 1819 2021 2223 24

hour
) § V;

16

Environmental Energy Technologies Division



Multi-criteria objective function
(no ZNEB)

0 « 1

100 kW reciprocating engines
780 kW absorption chillers
13427 kWh of electric storage
11239 kWh of heat storage
2709 kW (20 800 m?) of PV
3152 kW (6 300m?) of solar
thermal
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CA nursing home results

O Cost minimization: PV is not used for battery charging and
both are in competition

O CO, minimization: PV is used for battery charging

O CO, minimization results in unsustainable high energy costs
for the site - consideration of sophisticated efficiency
measures within DER-CAM and in reality necessary

O Waste heat utilization plays a role in ZNEB

| 1] W Environmental Energy Technologies Division 10



CA CHP GHG abatement

O Objective: to estimate the 2020 CO, abatement potential
of CHP in medium-sized CA commercial buildings with electric
peak loads between 100 kW and 5 MW

O Technical limitation: pick a sample of representative buildings
from the California End-Use Survey (CEUS) and build a
database to keep total runtime < 12 hours; automation of runs

O Use DER-CAM to examine CHP attractiveness in CA
commercial buildings and its competition with technologies
such as PV and solar thermal

O Estimate and report CO, results relative to California Air
Resource Board (CARB) goal of 4MW incremental CHP in
2020 for the entire commercial sector
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35% of commercial electric demand

All buildings with electric peak within range of 100 kW — 5 MW
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Results summary

Incremental CARB
2020 GOAL

assumed .

capacity =
factor ;

INSTALLED CAPACITY

4 GW 430 TWh/a

ndogenous|
capacity
actors

7.4TWh/a

1.3 Mt/a

cost savings
DER-CAM:

0.19G%/a
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SEDS

The Stochastic Lite Building Module
(SLBM) of SEDS
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The importance of uncertainty

Government Performance Result Act of 1993 (GPRA) requires
USDOE to predict and track the results of their programs—>
Impact of policies and R&D on market penetration as well as
CQO, emissions needs to be estimated
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- Point estimate forecasts are not sufficient and confidence
In the estimates can beneficially be expanded to probability
- - distributions
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SEDS

Berkeley Lab’s responsibilities

Biofuels Buildings

Heavy

2R Transportation

Macroeconomics

Hydrogen Industry

Liquid Fuels Light Vehicles
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SLBM logic flow

inputs
(GDP, population, fuel prices, etc.)
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How to deal with uncertainty?

O Experts for PV, lighting and windows were asked to estimate the
triangular distributions for technology parameters in 2010, 2015, and
2020

O Estimates are for different levels of USDOE R&D

¢ probability
2007 (reference)
.

e.g. 2015 and no R&D
e.g. 2020 and no R&D

most probable
/\. - >

largest improvement  smallest improvement e.g. costs

T
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Cumulative distributions

PV in commercial sector, e.g. PV system costs and efficiency

PV System Cost (US$/KW) Module Conversion Efficiency (%)
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Example results

Commercial PV generation, no USDOE R&D

possible range of outcome? - probability
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Conclusions

O SEDS simulations allow us to assess the risk involved in
technology penetration up to 2050

O SEDS can provide us with a portfolio of technologies with
different risk levels, e.g. LED is less risky in any SEDS
simulation than PV

O DER-CAM can be used for policy analyses and single
building optimization for a deterministic test year and
delivers very detailed answers as

o PV is mostly not used for battery charging if cost
minimization is considered

o PV is used for battery charging if CO, minimization is
considered
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Conclusions

o Waste heat utilization plays a role in ZNEB

o 1.5 GW incremental CHP capacity in medium sized CA
buildings can be achieved

O Incorporation of uncertainty capabilities from SEDS to DER-
CAM, stochastic optimization considering uncertainty in
energy prices, tariffs, etc.
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End

Thank you!

Questions and comments are very
welcome.
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